MATHEMATICS APPLICATIONS

MAWA Semester 1 (Unit 3) Examination 2016

Calculator-Assumed

Marking Key

MATHEMATICS APPLICATIONS SEMESTER 1 (UNIT 3) EXAMINATION

Section Two: Calculator-assumed

(100 Marks)

Question 7 (b)

Solution	
(i) Total carbohydrate = -0.849 x total fat + 82.048	
(ii) $r = -0.77$	
Marking key/mathematical behaviours	Marks
determines gradient and intercept on vertical axis for regression line	1
 identifies variables in regression line 	1
determines correlation coefficient	1

Question 7 (c)

Solution

Total carbohydrate = -0.849 x total fat + 82.048 = -0.849 x 30 + 83.048 = 57.6 g per 100 g		
Marking key/mathematical behaviours Ma		
 substitutes correctly into equation of line from (b) 	1	
determines total carbohydrate	1	

Question 7 (d)

Solution

Prediction is fairly reliable. It is made from within the data set – ie interpolated AND the correlation coefficient is much nearer -1 than 0

Marking key/mathematical benaviours	Iviarks
 identifies strength of the prediction 	1
 gives one reason to justify prediction 	1
 gives second reason to justify prediction 	1

Question 8 (a)

Solution	
7%	
Marking key/mathematical behaviours	Marks
 states the correct percentage 	1

Question 8 (b)

So	lution							
	Year	2012	2013	2014	2015	2017	2018	
	Number of tigers	427	457	489	523	599	641	
Ma	rking key/ma	thematical b	ehaviours				Marks	
determines correct year for population of 641			1					
determines another two entries				1				
determines another two entries					1			

Question 8 (c) (i)

Solution	
$P = 427 \times 1.07^{(n-1)}$	
Marking key/mathematical behaviours	Marks
expresses rule in correct format with correct starting term	1
• uses correct factor of $1.07^{(n-1)}$ in rule	1

Question 8 (c) (ii)

Solution	
$P = 427 \times (1.07)^8$	
=686	
Marking key/mathematical behaviours	Marks
identifies correct term	1
determines correct population	1

Question 8 (d)

Solution	
No because the difference between the annual populations is not constant	
Marking key/mathematical behaviours	Marks
concludes correctly	1
justifies conclusion	1

Question 8 (e)

Solution	
For 2022 $n = 11$	
$P = 427 \times (1.07)^{10} = 830$	
$F_{11} - 427 \times (1.07) = 639$ Marking kov/mathematical behaviours	Marka
	IVIAIRS
 identifies correct term n = 11 	1
determines population	1

Question 8 (f)

Solution	
$P_{?} >= 1000$	
? = 14	
2025	
Marking key/mathematical behaviours	Marks
identifies procedure to solve problem	1
determines correct year	1

Question 8 (g)

Solution	
The population will reach the target before 2025 (earlier)	
There is an increase in the rate of growth	
Marking key/mathematical behaviours	Marks
identifies earlier time	1
describes faster growth	1

Question 9 (a)

Solution	
EFGB (23), EFDGB (21), EACB (20) Quickest route is EACB. Time taken is 20 minutes.	
Marking key/mathematical behaviours	Marks
identifies edges for quickest route	1
determines time taken	1
shows a method for solution	1

Question 9 (b)

Solution

Jane's route: via F is E F D G B	
Marking key/mathematical behaviours	Marks
 identifies initial edge and finishing point 	1
 identifies edges for quickest route from F to B 	1

Question 9 (c)

Solution

Time taken via F = 21 minutes walking + 5 minutes at florist = 26 minutes.

26 mins – 20 mins = 6 minutes. Jane's journey took 6 minutes longer.

Marking key/mathematical benaviours	Marks
determines time taken via F	1
determines difference in times	1

Question 9 (d)

Solution	
EFDGBCA Visiting every intersection to check traffic lights working.	
Marking key/mathematical behaviours	Marks
identifies Hamiltonian path	1
identifies practical use of Hamiltonian path	1

٦

1

Question 10 (a)

So	lution
00	auon

Solution	
Survey more people OR Survey a greater variety of people	
Marking key/mathematical behaviours	Marks
 suggests improvement for data collection 	1

Question 10 (b)

Solution

How many hours did you spend driving a car before you sat the Practical Driving Assessment? Marking key/mathematical behaviours

determines an appropriate survey question

Question 10 (c)

Collect data to the nearest hour	
Collect data from more people	
Get the students to keep a driving log	
Collect data from a greater range of students	
Marking key/mathematical behaviours	Marks
 identifies two ways to improve the data collection 	2

Question 10 (d)

Solution

The mode is 30 and so is the median. Thirty hours is a typical time for these students to spend on driving before sitting the PDA.

The maximum score was 50, this is the most number of hours any student spent driving before the PDA.

 The minimum number of hours of driving before the PDA was 25 – it is the lowest score.

 Marking key/mathematical behaviours
 Marks

interprets the frequency table provided, drawing conclusions and uses 2 data to justify these conclusions. 2

Question 11 (a)

Solution

Falling at 1.5% per year	
Marking key/mathematical behaviours	Marks
identifies rate of decline	1

Question 11 (b)

Solution	
----------	--

The population change is classified as exponential decay.	
Marking key/mathematical behaviours	Marks
 identifies decay or negative change 	1
 identifies the change is exponential 	1

Question 11 (c)

Solution

242 000

Marking key/mathematical behaviours	Marks
identifies first term	1

Question 11 (d)

Solution

The 7 th term is 242 x 0.985 ⁶ = 221 020	
Marking key/mathematical behaviours	Marks
determines 7 th term	1

Question 11 (e)

Solution	
June 30, 2028	
Marking key/mathematical behaviours	Marks
 identifies recording at the end of June 	1
determines correct year	1

Question 11 (f)

Solution

	Date	No pigs imported	5000 pigs imported e after 2015	each year
	30 Jun 2015	242 000	242 000	
	30 Jun 2016	238 370	243 370	
	30 Jun 2017	234 794	244 719	
	Linear	$P_0 = 242\ 000$	$P_0 = 242\ 000$)
	relation	$P_{n+1} = 0.985 P_n$	$P_{n+1} = 0.985 P_n$	+ 5
larkiı	ng key/mathemat	ical behaviours		Marks
٠	enters number	of pigs for first option		1
•	enters number	of pigs for second option		1
٠	identifies linea	r recurrence relation for first option		1
•	identifies linea	recurrence relation for second optic	on	1

Question 12 (a)

Solution	
A = 100 – 4 – 21.1 – 47.9 = 27 or 27%	
Marking key/mathematical behaviours	Marks
determines remaining percentage	1

Question 12 (b)

Solution	
Data have been rounded	
Marking key/mathematical behaviours	Marks
identifies cause of incorrect total	1

Question 12 (c)

Solution	
Shopping	
Marking key/mathematical behaviours	Marks
interprets data in table	1

Question 12 (d)

Solution

games

9 • • •	
Marking key/mathematical behaviours	Marks
interprets data in table	1

Question 12 (e)

Solution

A higher proportion of the males surveyed never use the internet for email i.e 31.6% males compared to 20.5% of the females. A higher proportion of females use the internet for email often i.e. 13.6% of females compared to 9.5% of the males.

Marking key/mathematical behaviours	
 provides an accurate statement of proportion and provides data to support the statement 	1
 provides a second accurate statement of proportion and provides data to support the statement. 	1

Question 12 (f)

Solution

There could have been more males in the survey and 90% of this number may have been greater than the 92.5%.

The respondents were left to interpret the descriptors of rarely, sometimes and often so there is no indication in the data about the number of times respondents used the internet.

Marking key/mathematical behaviours

٠	gives one reason to support the conclusion provided	1
٠	gives a second reason to support the conclusion provided	1

Question 12 (g)

Solution

NOT SUPPORTED

The survey did not collect data about the amount of time, only the proportion of users so it is not known how much time people spent on the internet.

Marking key/mathematical behaviours	Marks
selects correct option	1
recognises the limitation of the data	1

Marks

Question 13 (a)

Solution	
\$1800	
Marking key/mathematical behaviours	Marks
reads scatter plot	1

Question 13 (b)

Solution	
Cost of flight	
Marking key/mathematical behaviours	Marks
identifies response variable	1

Question 13 (c) & (h)

Question 13 (d)

Solution	
95.4%	
Marking key/mathematical behaviours	Marks
identifies coefficient of determination	1

Question 13 (e)

Solution	
<i>r</i> = 0.9766	
Marking key/mathematical behaviours	Marks
calculates correlation coefficient	1

Question 13 (f)

Solution

0.98

0.00			
It was 0.9538 after the outlier was removed and would have been higher prior to that.			
Marking key/mathematical behaviours	Marks		
 identifies correct value for coefficient of determination 	1		
justifies choice	1		

Question 13 (g)

Solution	
Cost = 0.103 x 10000 - 7.166 = \$1023	
Marking key/mathematical behaviours	
 shows substitution into the equation provided 	1
determines predicted cost	1

Question 13 (i)

Solution		
The prediction is very reliable		
The correlation coefficient is very close to 1 (0.9766)		
Marking key/mathematical behaviours	Marks	
describes prediction	1	
justifies conclusion	1	

Question 14 (a)

Solution	
The values are all zero because players do not compete against themselves	
Marking key/mathematical behaviours	
explains the values in the leading diagonal	1

Question 14 (b)

Solution	
Total number of games won by each player	
Marking key/mathematical behaviours	Marks
identifies total number of games	1
 describes games belonging to one player 	1

Question 14 (c)

Solution

The person in row m had lost to the person in column n

The person in row n must have beaten the person in column m. It is the same match so the opposite results are stored in the "complementary" positions.

Marking key/mathematical behaviours	
 identifies the same match is described 	1
 identifies opposite results for the opponents 	1

Question 14 (d)

Question 14 (e)

Solution	
(i) Kate and Andrew	
(ii) row 1 column 3	
Marking key/mathematical behaviours	Marks
interprets digraph	1
 relates digraph to matrix 	1

Question 14 (f)

inn
ЮЛТ

0, There was no one that Jane beat who also beat Liz	
Marking key/mathematical behaviours	Marks
locates element in matrix	1
interprets matrix	1

Question 14 (g)

Solution	
3	
Marking key/mathematical behaviours	Marks
uses adjacency matrix to solve problem	1

Question 15

Solution				
Sequence	Arithmetic or geometric	Exponential or linear	Growth c	or decay
Α	arithmetic	linear	grov	vth
В	geometric	exponential	decay	
С	geometric	exponential	dec	ау
D	arithmetic	linear	growth	
E	arithmetic	linear	growth	
F	geometric	exponential	decay	
Marking key/	mathematical behaviours			Marks
 Ident 	ifies of given sequence			6

Question 16 (a)

Solution	
It decreases	
Marking key/mathematical behaviours	Marks
 interprets relationship between variables 	1

Question 16 (b)

Solution

(i) relationship is negative	
(ii) relationship is linear	
(ii) relationship is strong	
Marking key/mathematical behaviours	Marks
 interprets negativity of relationship 	1
 interprets linearity of relationship 	1
 interprets strength of relationship 	1

Question 16 (c)

Solution

Generally speaking students did ATAR or VET in 2015 so the percentages added up to about 100%. Some students achieved both (over 100% in some schools) and some achieved neither (less than 100%). One variable does not cause the other but there is a very strong association between them because students do not tend to choose to do both as the time to do both is limited.

Marking key/mathematical behaviours

indicates variables are complementary
describes lack of causality

Marks